
PyPop API Reference
Developer documentation

Release 1.4.0

Alexander K. Lancaster

Jan 27, 2026

Contents

1 API changes 1

2 Package introduction 2

3 Submodules 3
PyPop.citation . 3
PyPop.command_line_interface . 3
PyPop.datatypes . 5
PyPop.filters . 8
PyPop.haplo . 13
PyPop.hardyweinberg . 16
PyPop.homozygosity . 19
PyPop.parsers . 22
PyPop.popaggregate . 25
PyPop.popanalysis . 27
PyPop.popmeta . 29
PyPop.pypop . 29
PyPop.randombinning . 29
PyPop.utils . 30
PyPop.xslt . 39

4 Deprecated Submodules 41
PyPop.arlequin . 41

5 Attributes 43

6 Exceptions 43

7 Functions 43

8 Package Contents 43

9 GNU Free Documentation License 44

Python Module Index 47

Index 49

Documenting API for release 1.4.0 of PyPop.

Document revision: 1.4.0.post8+gc935a7b36

This API reference guide for PyPop is automatically generated from the 1.4.0 source code via sphinx-autoapi1.

Copyright © 2025 PyPop contributors

License terms Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant Sections no Front-Cover Texts and no Back-Cover Texts. A copy
of the license is included in the License chapter. (GNU Free Documentation License)

References to the User Guide can be found in the PyPop User Guide: HTML2 | PDF3.

1 API changes
In PyPop 1.4.0, modules have been renamed to follow the lower-case convention of PEP84. In addition to lowercasing, some have further renaming
to clarify their purpose and follow standard conventions. Backwards-compatibile bindings have been created that allow end-user Python scripts using
the PyPop API to continue to work with the old module names. However such use will raise a PyPopModuleRenameDeprecationWarning (a custom
DeprecationWarning5). In the following minor release, 1.5.0, the warnings will become more visible UserWarning6. These bindings will be completely
removed in the next major release.

Note:
Command-line users of pypop will not be affected by these changes, which are completely internal, scripts will continue to work with no changes
needed in any configuration files.

1

https://github.com/readthedocs/sphinx-autoapi
http://pypop.org/docs
http://pypop.org/pypop-guide-1.4.0.pdf
https://peps.python.org/pep-0008/#package-and-module-names
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#UserWarning

Below are the list of all API changes, including removals and any other ongoing API deprecations, and notifications of upcoming removals.

Changed in version 1.4.0

Changed in version 1.4.0: The following modules were renamed or refactored:

• PyPop.CommandLineInterface→ PyPop.command_line_interface Lowercased for PEP8 compliance; underscores separate read-
able words.

• PyPop.DataTypes→ PyPop.datatypes Lowercased for PEP8 compliance and consistency with plural naming for data structures.

• PyPop.Filter→ PyPop.filters Lowercased and clarified plural form since module defines multiple filter functions.

• PyPop.Haplo→ PyPop.haplo Lowercased for PEP8 compliance.

• PyPop.HardyWeinberg→ PyPop.hardyweinberg Lowercased for PEP8 compliance.

• PyPop.Homozygosity→ PyPop.homozygosity Lowercased for PEP8 compliance.

• PyPop.Main → PyPop.popanalysis Lowercased and renamed for clarity; represents per-population analysis rather than script entry
point.

• PyPop.Meta→ PyPop.popaggregate Lowercased and renamed for clarity; aggregates results across populations, not ‘metadata’.

• PyPop.ParseFile→ PyPop.parsers Lowercased for and renamed for clarity: module parses multiple file types, not just one file.

• PyPop.RandomBinning→ PyPop.randombinning Lowercased for PEP8 compliance.

• PyPop.Utils→ PyPop.utils Lowercased for PEP8 compliance.

Removed in version 1.4.0

Removed in version 1.4.0: The following modules or classes were removed:

• PyPop.GUIApp Obsolete, never fully implemented a full wxPython UI. Replaced by built-in Tkinter file-picker

• PyPop.Utils.Index Obsolete, replaced with collections.OrderedDict7with it’s own Index class

• PyPop.Utils.OrderedDict Obsolete, replaced with collections.OrderedDict8

Deprecated since version 1.0.0

Deprecated since version 1.0.0: The following modules were marked deprecated:

• PyPop.Arlequin→ PyPop.arlequin Scheduled for removal in 1.5.0. Lowercased for PEP8 compliance.

2 Package introduction
PyPop is a framework for performing population genetics analyses.

PyPop was originally designed as an end-to-end pipeline that reads configuration files and datasets and produces standardized outputs. While the primary
workflow is file-based, most internal functionality is exposed as Python modules and classes.

(Important

Updates to PyPop’s API to better expose and streamline “library” access to PyPop’s functionality in end-user programs is still a work-in-progress.
Although this API is intended to serve end-users and developers of PyPop, parts of it are not yet optimized for end-users.

Driving PyPop programmatically can be done via the popanalysis and popaggregate modules. In the example below, we run an simple analysis on a
single input .pop file and generate output TSV files. There are two main steps:

1. Create the ConfigParser9instance (see configuration file section in the PyPop User Guide for the description of the configuration options), supply
this to the Main class, along with an input .pop file, to perform the analysis.

2. Next get the name of output XML file from the generated Main instance, and pass it to the Meta to generate TSV output files.

>>> from PyPop.popanalysis import Main
>>> from configparser import ConfigParser
>>>
>>> config = ConfigParser()
>>> config.read_dict({
... "ParseGenotypeFile": {"validSampleFields": "*a_1\n*a_2"},

(continues on next page)

2

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

(continued from previous page)

... "HardyWeinberg": {"lumpBelow": "5"}})
>>>
>>> pop_contents = '''a_1\ta_2
... 01:01\t02:01
... 02:10\t03:01:02'''
>>> with open("my.pop", "w") as f:
... _ = f.write(pop_contents)
...
>>> application = Main(
... config=config,
... fileName="my.pop",
... version="fake",
...)
LOG: no XSL file, skipping text output
LOG: Data file has no header data block
>>> outXML = application.getXmlOutPath()
>>> from PyPop.popaggregate import Meta
>>> _ = Meta (TSV_output=True, xml_files=[outXML])
./1-locus-hardyweinberg.tsv
./1-locus-summary.tsv
./1-locus-allele.tsv
./1-locus-genotype.tsv

/ See also

The PyPop API examples in the PyPop User Guide for a more detailed breakdown of use of the API.

3 Submodules

PyPop.citation
Module for generating citation formats.

Attributes

citation_output_formats Valid citation output formats supported by cffconvert

Functions

convert_citation_formats(build_lib, citation_path) Generate all supported citation formats.

Module Contents

citation_output_formats = ['apalike', 'bibtex', 'endnote', 'ris', 'codemeta', 'cff', 'schema.org', 'zenodo']

Valid citation output formats supported by cffconvert

convert_citation_formats(build_lib, citation_path)
Generate all supported citation formats.

Parameters

• build_lib (str) – path to build directory when creating package

• citation_path (str) – path to standard CITATION.cff file

PyPop.command_line_interface
Command-line interface for PyPop scripts.

Classes

CitationAction A custom argparse Citation action to read the appropriate citation file
format.

3

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Functions

get_parent_cli([version, copyright_message]) Command-line options common to all scripts.
get_pypop_cli([version, copyright_message]) Command-line options for pypop script.
get_popmeta_cli([version, copyright_message]) Command-line options for popmeta script.

Module Contents

class CitationAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None,
metavar=None)

Bases: argparse.Action10

Action CitationAction

A custom argparse Citation action to read the appropriate citation file format.

__call__(parser, _, values, _option_string=None)

get_parent_cli(version='', copyright_message='')
Command-line options common to all scripts.

Parameters

• version (str) – Software version.

• copyright_message (str) – Override the copyright message.

Returns

A tuple of:

• parent_parser (argparse.ArgumentParser): The base parser.

• ihwg_args (tuple): Options for the IHWG module.

• phylip_args (tuple): Options for the Phylip module.

• common_args (tuple): Common options.

• prefix_tsv_args (tuple): TSV prefix options.

Return type
tuple

get_pypop_cli(version='', copyright_message='')
Command-line options for pypop script.

Parameters

• version (str) – software version

• copyright_message (str) – override the copyright message

Returns
parser for pypop

Return type
argparse.ArgumentParser11

get_popmeta_cli(version='', copyright_message='')
Command-line options for popmeta script.

Parameters

• version (str) – software version

• copyright_message (str) – override the copyright message

Returns
parser for popmeta

Return type
argparse.ArgumentParser12

4

https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

PyPop.datatypes
Data structures storing genotype and allele count data.

Classes

Genotypes Stores genotypes and caches basic genotype statistics.
AlleleCounts Deprecated class to store information in allele count form.

Functions

checkIfSequenceData(matrix) Heuristic check to determine whether we are analysing sequence.
getMetaLocus(locus, isSequenceData) Get the overall locus that this sequence belongs to.
getLocusPairs(matrix, sequenceData) Get locus pairs for a given matrix.
getLumpedDataLevels(genotypeData, locus, lumpLevels) Get lumped data for a specific locus.

Module Contents

class Genotypes(matrix=None, untypedAllele='****', unsequencedSite=None, allowSemiTyped=0)
Stores genotypes and caches basic genotype statistics.

Parameters

• matrix (StringMatrix) – The StringMatrix to be converted into a Genotype instance

• untypedAllele (str) – The placeholder for an untyped allele site

• unsequencedSite (bool) – The identifier used for an unsequenced site (only used for sequence data)

• allowSemiTyped (int) – Whether or not to allow individuals that are typed at only one allele

getLocusList()

Get the list of loci.

Note

The returned list filters out all loci that consist of individuals that are all untyped. The order of returned list is now fixed for the lifetime
of the object.

Returns
The list of loci.

Return type
list

getAlleleCount()

Allele count statistics for all loci.

Returns
a map of tuples where the key is the locus name. Each tuple is a triple, consisting of a map keyed by alleles containing counts,
the total count at that locus and the number of untyped individuals.

Return type
dict

getAlleleCountAt(locus, lumpValue=0)
Get allele count for given locus.

Parameters

• locus (str) – locus

• lumpValue (int) – the specified amount of lumping (Default: 0)

Returns
a tuple consisting of a map keyed by alleles containing counts, the total count at that locus, and number of untyped individuals.

Return type
tuple

5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

serializeSubclassMetadataTo(stream)
Serialize subclass-specific metadata.

Specifically, total number of individuals and loci and population name.

Parameters
stream (TextOutputStream) – the stream used for output.

serializeAlleleCountDataAt(stream, locus)
Serialize locus count data for a specific locus.

Specifically, total number of individuals and loci and population name.

Parameters

• stream (TextOutputStream) – the stream used for output

• locus (str) – locus

serializeAlleleCountDataTo(stream)
Serialize allele count data for a specific locus.

Parameters
stream (TextOutputStream) – the stream used for output

Returns
always returns 1

Return type
int

getLocusDataAt(locus, lumpValue=0)
Get the genotyped data for specified locus.

Note

The returned list has filtered out all individuals that are untyped at either chromosome. Data is sorted so that allele1 < allele2,
alphabetically

Parameters

• locus (str) – locus to use

• lumpValue (int) – the specified amount of lumping (Default: 0).

Returns
a list genotypes consisting of 2-tuples which contain each of the alleles for that individual in the list.

Return type
list

getLocusData()

Get the genotyped data for all loci.

Returns
keyed by locus name of lists of 2-tuples as defined by getLocusDataAt()

Return type
dict

getIndividualsData()

Get data for all individuals.

Returns
StringMatrix for all individuals

Return type
StringMatrix

class AlleleCounts(alleleTable=None, locusName=None)
Deprecated class to store information in allele count form.

6

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Deprecated since version 0.6.0

Deprecated since version 0.6.0: this class is now obsolete, the Genotypes class now holds allele count data as pseudo-genotype matrix.

serializeSubclassMetadataTo(stream)
Serialize subclass-specific metadata.

Specifically, total number of alleles and loci.

serializeAlleleCountDataAt(stream, locus)

getAlleleCount()

getLocusName()

checkIfSequenceData(matrix)
Heuristic check to determine whether we are analysing sequence.

Note

The regex matches loci of the form A_32 or A_-32

Parameters
matrix (StringMatrix) – matrix to check

Returns
if sequence, return 1, otherwise 0

Return type
int

getMetaLocus(locus, isSequenceData)
Get the overall locus that this sequence belongs to.

Parameters

• locus (str) – Locus of interest.

• isSequenceData (bool) – whether this locus is sequence data

Returns
The locus name, or None if not sequence data.

Return type
str

getLocusPairs(matrix, sequenceData)
Get locus pairs for a given matrix.

Parameters

• matrix (StringMatrix) – matrix

• sequenceData (bool) – is this sequence data?

Returns
Returns a list of all pairs of loci from a given StringMatrix.

Return type
list

getLumpedDataLevels(genotypeData, locus, lumpLevels)
Get lumped data for a specific locus.

Parameters

• genotypeData (Genotypes) – genotype data to query

• locus (str) – the locus

• lumpLevels (list) – a list of integers representing lumping levels

Returns

a dictionary of tuples:

7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

• locusData: keyed by locus

• alleleCount:

Return type
dict

PyPop.filters
Filters for pre-filtering of data files before analysis.

This module includes filters that modify or otherwise transform the input data before being passed to PyPop analysis.

Exceptions

SubclassError Customized exception if a subclass doesn't implement required methods.

Classes

Filter Abstract base class for all Filters.
PassThroughFilter A filter that doesn't change input data.
AnthonyNolanFilter Filters data via Anthony Nolan's allele call data.
BinningFilter Filters original data into "bins".
AlleleCountAnthonyNolanFilter Filters data with an allelecount less than a threshold.

Module Contents

exception SubclassError

Bases: Exception13

SubclassError

Customized exception if a subclass doesn’t implement required methods.

Initialize self. See help(type(self)) for accurate signature.

__str__()

Returns a warning to subclass.

class Filter

Bases: abc.ABC14

ABC Filter

Abstract base class for all Filters.

abstractmethod doFiltering(matrix=None)

abstractmethod startFirstPass(locus)

abstractmethod checkAlleleName(alleleName)

abstractmethod addAllele(alleleName)

abstractmethod endFirstPass()

abstractmethod startFiltering()

abstractmethod filterAllele(alleleName)

abstractmethod endFiltering()

abstractmethod writeToLog(logstring=None)

8

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/abc.html#abc.ABC

abstractmethod cleanup()

class PassThroughFilter

Bases: Filter

ABC Filter PassThroughFilter

A filter that doesn’t change input data.

doFiltering(matrix=None)

startFirstPass(locus)

checkAlleleName(alleleName)

addAllele(alleleName)

endFirstPass()

startFiltering()

filterAllele(alleleName)

endFiltering()

writeToLog(logstring=None)

cleanup()

class AnthonyNolanFilter(directoryName=None, remoteMSF=None, alleleFileFormat='msf', preserveAmbiguousFlag=0, preserveUnknownFlag=0,
preserveLowresFlag=0, alleleDesignator='*', logFile=None, untypedAllele='****', unsequencedSite='#',
sequenceFileSuffix='_prot', filename=None, numDigits=4, verboseFlag=1, sequenceFilterMethod='strict')

Bases: Filter

ABC Filter AnthonyNolanFilter

Filters data via Anthony Nolan’s allele call data.

Allele call data files can be of either txt or msf formats.

• txt files available at http://www.anthonynolan.com

• msf files available at ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/

Base class parameters.

Parameters

• directoryName (str) – directory that AnthonyNolan allele data is located

• remoteMSF (str) – Specifies the version (tag) of the remote msf directory in the IMGT-HLA GitHub repo15. If present, the
remote MSF files for the specified version will be downloaded on-demand, and cached for later reuse

• alleleFileFormat (str, optional) – file format, can be txt or msf (default). Use of msf files is required in order to
translate allele codes into polymorphic sequence data.

• preserveAmbiguousFlag (int, optional) – If set to 0 (default) then ambiguitity is removed (e.g. 010101/0102/
010301 will truncate this to 0101). To preserve the ambiguity, set the option to 1 (for this example, it will result in a filtered
allele “name” of 0101/0102/0103)

• preserveUnknownFlag (int, optional) – If set to 0 (default) replace unknown alleles with the untypedAllele desig-
nator. To keep unrecognized allele names set to 1.

• preserveLowresFlag (int, optional) – This option is similar to preserveUnknownFlag, but only applies to lowres
alleles. If set to 1, PyPop will keep allele names that are shorter than the default allele name length, usually 4 digits long.
But if preserveUnknownFlag is set, this option has no effect, because all unknown alleles are preserved.

• alleleDesignator (str, optional) – the designator used to indicate a locus name (default *),

• logFile (str, optional) – log file

• untypedAllele (str, optional) – defaults to ****

• unsequencedSite (str, optional) – defaults to #

9

http://www.anthonynolan.com
ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/ANHIG/IMGTHLA/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

• sequenceFileSuffix (str, optional) – Suffix for file names used for finding sequences each allele. (e.g.„ if the file for
locus A is A_prot.msf, then keep the default be _prot. For nucleotide sequence files, this would be set _nuc.

• filename (str, optional) – Currently not used

• numDigits (int, optional) – Number of digits used for HLA data (default 4)

• verboseFlag (int, optional) – Verbose output (default is on, i.e. 1)

• sequenceFilterMethod (str, optional) – matching alleles to sequence, defaults to strict, can also be greedy

doFiltering(matrix=None)
Do filtering on the provided matrix.

Parameters
matrix (StringMatrix) – matrix to be filteredng

Returns
returns processed matrix for further downstream processing

Return type
StringMatrix

startFirstPass(locus)
Start the first pass of filtering.

Parameters
locus (str) – locus to start filtering

/ See also

Must be paired with a subsequent endFirstPass()

checkAlleleName(alleleName)
Checks allele name against the database.

Parameters
alleleName (str) – allele name

Returns
returns the original allele truncated to appropriate number of digits, if it can’t be found using any of the heuristics, return it
as an untypedAllele (normally ****).

Return type
str

addAllele(alleleName)
Add allele to be filtered.

Parameters
alleleName (str) – process allele to be filtered

endFirstPass()

End first pass of filtering.

/ See also

Must be paired with a previous startFirstPass()

startFiltering()

Start the main filtering.

/ See also

must be paired with a subsequent endFiltering()

10

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

filterAllele(alleleName)
Filter a specified allele.

Parameters
alleleName (str) – allele to filter

Returns
return the translated allele

Return type
dict

endFiltering()

End filtering.

/ See also

Must be paired with a previous startFiltering()

writeToLog(logstring='\n')
Write a string to log.

Parameters
logstring (str) – defaults to line feed

cleanup()

Do any cleanups.

makeSeqDictionaries(matrix=None, locus=None)
Make a sequence dictionary for a given locus.

Parameters

• matrix (StringMatrix) – matrix to use.

• locus (str) – locus to use.

Returns

polyseq (dict): Keyed on locus*allele of all allele sequences, containing ONLY the polymorphic positions.

polyseqpos (dict): Keyed on locus of the positions of the polymorphic residues which you find in polyseq.

Return type
tuple

Raises
RuntimeError16– If the alignment length could not be found in the MSF header.

translateMatrix(matrix=None)
Translate the whole matrix (all loci).

Parameters
matrix (StringMatrix) – matrix to translate

Returns
new instance with sequence data in columns

Return type
StringMatrix

class BinningFilter(customBinningDict=None, logFile=None, untypedAllele='****', filename=None, binningDigits=4)
Filters original data into “bins”.

This can be done through either digits (for HLA alleles) or custom rules defined a file for each locus.

Parameters

• customBinningDict (dict, optional) – a custom binning dict, this is keyed by locus, but each key consists of a series
of lines, each line containing ruleset of which alleles belong in a given bin

• logFile (str, optional) – output logfilek, must be set

• untypedAllele (str, optional) – defaults to ****

• filename (str, optional) – filename (unused), defaults to None

11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

• binningDigits (int, optional) – defaults to 4

doDigitBinning(matrix=None)
Do the digit binning on specified matrix.

Note

Digit binning is done only if binningDigits is set.

Parameters
matrix (StringMatrix) – matrix to modify

Returns
the modified matrix

Return type
StringMatrix

doCustomBinning(matrix=None)
Do the custom binning on specified matrix.

Note

Custom binning is done only if customBinningDict is set.

Parameters
matrix (StringMatrix) – matrix to modify

Returns
the modified matrix

Return type
StringMatrix

lookupCustomBinning(testAllele, locus)
Apply custom binning rules to a allele and locus pair.

Parameters

• testAllele (str) – allele to check

• locus (str) – locus to check

Returns
binned (or not) allele

Return type
str

class AlleleCountAnthonyNolanFilter(lumpThreshold=None, **kw)
Bases: AnthonyNolanFilter

ABC Filter AlleleCountAnthonyNolanFilterAnthonyNolanFilter

Filters data with an allelecount less than a threshold.

Parameters
lumpThreshold (int) – set threshold

Base class parameters.

Parameters

• directoryName (str) – directory that AnthonyNolan allele data is located

• remoteMSF (str) – Specifies the version (tag) of the remote msf directory in the IMGT-HLA GitHub repo17. If present, the
remote MSF files for the specified version will be downloaded on-demand, and cached for later reuse

• alleleFileFormat (str, optional) – file format, can be txt or msf (default). Use of msf files is required in order to
translate allele codes into polymorphic sequence data.

12

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/ANHIG/IMGTHLA/
https://docs.python.org/3/library/stdtypes.html#str

• preserveAmbiguousFlag (int, optional) – If set to 0 (default) then ambiguitity is removed (e.g. 010101/0102/
010301 will truncate this to 0101). To preserve the ambiguity, set the option to 1 (for this example, it will result in a filtered
allele “name” of 0101/0102/0103)

• preserveUnknownFlag (int, optional) – If set to 0 (default) replace unknown alleles with the untypedAllele desig-
nator. To keep unrecognized allele names set to 1.

• preserveLowresFlag (int, optional) – This option is similar to preserveUnknownFlag, but only applies to lowres
alleles. If set to 1, PyPop will keep allele names that are shorter than the default allele name length, usually 4 digits long.
But if preserveUnknownFlag is set, this option has no effect, because all unknown alleles are preserved.

• alleleDesignator (str, optional) – the designator used to indicate a locus name (default *),

• logFile (str, optional) – log file

• untypedAllele (str, optional) – defaults to ****

• unsequencedSite (str, optional) – defaults to #

• sequenceFileSuffix (str, optional) – Suffix for file names used for finding sequences each allele. (e.g.„ if the file for
locus A is A_prot.msf, then keep the default be _prot. For nucleotide sequence files, this would be set _nuc.

• filename (str, optional) – Currently not used

• numDigits (int, optional) – Number of digits used for HLA data (default 4)

• verboseFlag (int, optional) – Verbose output (default is on, i.e. 1)

• sequenceFilterMethod (str, optional) – matching alleles to sequence, defaults to strict, can also be greedy

endFirstPass()

End first pass and then lump alleles.

First process regular AnthonyNolanFilter then modify all alleles with a count < lumpThreshold to lump.

PyPop.haplo
Module for estimating haplotypes and linkage disequilibrium measures.

Currently there are two implementations: Emhaplofreq and Haplostats.

Classes

Haplo Estimating haplotypes given genotype data.
Emhaplofreq Haplotype and linkage disequilibrium (LD) estimation via emhaplofreq.
Haplostats Haplotype and LD estimation implemented via haplo.stats.
HaploArlequin Performs haplotype estimation via Arlequin.

Module Contents

class Haplo

Estimating haplotypes given genotype data.

This is abstract stub class (currently has no methods).

class Emhaplofreq(locusData, untypedAllele='****', stream=None, testMode=False)
Bases: Haplo

EmhaplofreqHaplo

Haplotype and linkage disequilibrium (LD) estimation via emhaplofreq.

This is essentially a wrapper to a Python extension built on top of the emhaplofreq command-line program. Will refuse to estimate haplotypes
longer than that defined by emhaplofreq.

Parameters

• locusData (StringMatrix) – a StringMatrix

• untypedAllele (str) – defaults to ****

• stream (TextOutputStream) – output file

• testMode (bool) – default is False

13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

serializeStart()

Serialize start of XML output to the currently defined XML stream.

/ See also

must be paired with a subsequent Emhaplofreq.serializeEnd()

serializeEnd()

Serialize end of XML output to the currently defined XML stream.

/ See also

must be paired with a previous Emhaplofreq.serializeStart()

estHaplotypes(locusKeys=None, numInitCond=None)
Estimate haplotypes for listed loci in locusKeys.

Parameters

• locusKeys (str) – format is a string consisting of

– comma (,) separated haplotypes blocks for which to estimate haplotypes

– within each “block”, each locus is separated by colons (:)

• numInitCond (int) – number of initial conditions to use

Example

*DQA1:*DPB1,*DRB1:*DQB1, means to estimate haplotypes for DQA1 and DPB1 loci followed by estimation of haplotypes for DRB1 and DQB1
loci.

estLinkageDisequilibrium(locusKeys=None, permutationPrintFlag=0, numInitCond=None, numPermutations=None,
numPermuInitCond=None)

Estimate linkage disequilibrium (LD) for listed loci.

Parameters

• locusKeys (str) – see estHaplotypes()

• permutationPrintFlag (int) – print all permutations (default 0)

• numInitCond (int) – number of initial conditions (default None)

• numPermutations (int) – number of permutations (default None)

• numPermuInitCond (int) – number of initial conditions for each permutation (default None)

Example

See estHaplotypes() for an example that estimates LD

allPairwise(permutationPrintFlag=0, numInitCond=None, numPermutations=None, numPermuInitCond=None, haploSuppressFlag=None,
haplosToShow=None, mode=None)

Estimate pairwise statistics for a given set of loci.

Depending on the flags passed, this can be used to estimate both LD (linkage disequilibrium) and HF (haplotype frequencies), an optional
permutation test on LD can be run.

Parameters

• permutationPrintFlag (int) – sets whether the result from permutation output run will be included in the output XML.
Default: 0 (disabled).

• numInitCond (int) – sets number of initial conditions before performing the permutation test. Default: None.

• numPermutations (int) – sets number of permutations that will be performed. Default: None.

• numPermuInitCond (int) – sets number of initial conditions tried per-permutation. Default: None.

• haploSuppressFlag (int) – sets whether haplotype information is generated in the output. Default: None

• haplosToShow (list) – list of haplotypes to show in output

14

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

• mode (str) – mode for haplotype output

class Haplostats(locusData, untypedAllele='****', stream=None, testMode=False)
Bases: Haplo

Haplo Haplostats

Haplotype and LD estimation implemented via haplo.stats.

This is a wrapper to a portion of the haplo.stats R package.

Parameters

• locusData (StringMatrix) – a StringMatrix

• untypedAllele (str) – defaults to ****

• stream (TextOutputStream) – output file

• testMode (bool) – default is False

serializeStart()

Serialize start of XML output to currently defined XML stream.

/ See also

must be paired with a subsequent Haplostats.serializeEnd()

serializeEnd()

Serialize end of XML output to currently defined XML stream.

/ See also

must be paired with a previous Haplostats.serializeStart()

estHaplotypes(locusKeys=None, weight=None, control=None, numInitCond=10, testMode=False)
Estimate haplotypes for listed loci in locusKeys.

If locusKeys is None, assume entire matrix. LD is also estimated if there are locusKeys consisting of only two loci.

í Warning

FIXME: this does not yet remove missing data before haplotype estimations

Parameters

• locusKeys (str) – see Emhaplofreq.estHaplotypes() for format

• weight (list) – set weights (default None, which sets all weights equal)

• control (dict) – a dictionary of control parameters

• numInitCond (int) – number of initial conditions (default None)

• testMode (bool) – run in test mode default is False

Returns
multiple statistics

Return type
tuple

allPairwise(weight=None, control=None, numInitCond=10)
Estimate pairwise statistics for all pairs of loci.

Parameters

• weight (list) – see Haplostats.estHaplotypes()

15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

• control (dict) – see Haplostats.estHaplotypes()

• numInitCond (int) – see Haplostats.estHaplotypes()

class HaploArlequin(arpFilename, idCol, prefixCols, suffixCols, windowSize, mapOrder=None, untypedAllele='0', arlequinPrefix='arl_run')
Bases: Haplo

Haplo HaploArlequin

Performs haplotype estimation via Arlequin.

Deprecated since version 1.0.0

Deprecated since version 1.0.0.

Outputs Arlequin format data files and runtime info, also runs and parses the resulting Arlequin data so it can be made available programmatically to
rest of Python framework.

Delegates all calls Arlequin to an internally instantiated ArlequinBatch Python object called ‘batch’.

Parameters

• arpFilename (str) – Arlequin filename (must have .arp file extension)

• idCol (str) – column in input file that contains the individual id.

• prefixCols (int) – number of columns to ignore before allele data starts

• suffixCols (int) – number of columns to ignore after allele data stops

• windowSize (int) – size of sliding window

• mapOrder (list) – list order of columns if different to column order in file (defaults to order in file)

• untypedAllele (str) – (defaults to 0)

• arlequinPrefix (str) – prefix for all Arlequin run-time files (defaults to arl_run).

outputArlequin(data)
Outputs the specified .arp sample file.

Parameters
data (list) – list of strings containing the .arp sample file

runArlequin()

Run the Arlequin haplotyping program.

Generates the expected .txt set-up files for Arlequin, then forks a copy of arlecore.exe, which must be on PATH to actually generate the
haplotype estimates from the generated .arp file.

genHaplotypes()

Parses Arlequin output to retrieve estimated haplotypes.

Returns

a list of the sliding windows which consists of tuples. Each tuple consists of:

• freqs (dict): dictionary entry (the haplotype-frequency) key-value pairs.

• popName (str): population name (original .arp file prefix)

• sampleCount (int): sample count (number of samples for that window)

• lociList (list): ordered list of loci considered

Return type
list

PyPop.hardyweinberg
Computing Hardy-Weinberg statistics on genotype data.

16

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Attributes

use_scipy If True use scipy to compute pvalue, rather than internal pval

Classes

HardyWeinberg Calculate Hardy-Weinberg statistics for a single locus.
HardyWeinbergGuoThompson Use Guo & Thompson (1992) algorithm for calculating statistics.
HardyWeinbergEnumeration HW testing with Maldonado Torres' exact enumeration test.
HardyWeinbergGuoThompsonArlequin Arlequin implementation of the Guo & Thompson algorithm.

Functions

pval(chisq, dof) Calculate p-value.

Module Contents

use_scipy = False

If True use scipy to compute pvalue, rather than internal pval

class HardyWeinberg(locusData=None, alleleCount=None, lumpBelow=5, flagChenTest=0)
Calculate Hardy-Weinberg statistics for a single locus.

Given the observed genotypes for a locus, calculate the expected genotype counts based on Hardy Weinberg proportions for individual genotype
values, and test for fit.

Parameters

• locusData (list) – list of tuples of genotype (allele1, allele2)

• alleleCount (tuple) – a tuple consisting of a dictionary of counts, total count and number of untyped individuals as
returned by PyPop.DataTypes.Genotypes.getLocusDataAt()

• lumpBelow (int, optional) – lump alleles with frequency less than this threshold as if they were in same class (Default:
5)

• flagChenTest (int, optional) – if enabled (1) do Chen’s chi-square-based “corrected” p-value (Default: 0, disabled)

serializeTo(stream, allelelump=0)
Serialize output to specified XML stream.

Parameters

• stream (XMLOutputStream) – write to specified XML stream (generally a file)

• allelelump (int) – record the allele lumping value

serializeXMLTableTo(stream)
Serialize the genotype table.

Parameters
stream (XMLOutputStream) – XML stream

class HardyWeinbergGuoThompson(locusData=None, alleleCount=None, runMCMCTest=0, runPlainMCTest=0, dememorizationSteps=2000,
samplingNum=1000, samplingSize=1000, maxMatrixSize=250, monteCarloSteps=1000000, testing=False, **kw)

Bases: HardyWeinberg

HardyWeinberg HardyWeinbergGuoThompson

Use Guo & Thompson (1992) algorithm for calculating statistics.

This Python class wraps the functionality of the Guo & Thompson program gthwe. In addition to the arguments for the base class, this class accepts
the following additional keywords:

Parameters

• locusData (list) – list of tuples of genotype (allele1, allele2)

• alleleCount (tuple) – a tuple consisting of a dictionary of counts, total count and number of untyped individuals as
returned by PyPop.DataTypes.Genotypes.getLocusDataAt()

17

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

• runMCMCTest (int) – If enabled (1) run the Monte Carlo-Markov chain (MCMC) version of the test (what is normally
referred to as “Guo & Thompson”), default disabled (0)

• runPlainMCTest (int) – If enabled (1) run a plain Monte Carlo/randomization without the Markov-chain version of the
test (this is also described in the original Guo & Thompson Biometrics paper, but was not in their original program)

• dememorizationSteps (int) – number of “dememorization” initial steps for random number generator (default 2000).

• samplingNum (int) – the number of chunks for random number generator (default 1000).

• samplingSize (int) – size of each chunk (default 1000).

• maxMatrixSize (int) – maximum size of flattened’ lower-triangular matrix of observed alleles (default ``250`).

• monteCarloSteps (int) – number of steps for the plain Monte Carlo randomization test (without Markov-chain)

• testing (bool) – testing mode, default False

generateFlattenedMatrix()

Generated a flattened version of the genotype matrix.

dumpTable(locusName, stream, allelelump=0)
Output table to stream.

Parameters

• locusName (str) – locus to output table

• stream (XMLOutputStream) – name of XML stream

• allelelump (int) – record allele lumping level (default 0)

Returns
if an empty tag

Return type
None

class HardyWeinbergEnumeration(locusData=None, alleleCount=None, doOverall=0, **kw)
Bases: HardyWeinbergGuoThompson

HardyWeinberg HardyWeinbergGuoThompson HardyWeinbergEnumeration

HW testing with Maldonado Torres’ exact enumeration test.

í Warning

This requires the Enumeration C code to be compiled as a module using SWIG. By default this is currently disabled.

Parameters

• locusData (list) – list of tuples of genotype (allele1, allele2)

• alleleCount (tuple) – a tuple consisting of a dictionary of counts, total count and number of untyped individuals as
returned by PyPop.DataTypes.Genotypes.getLocusDataAt()

• doOverall (int) – if set to true (1), then do overall p-value test default is false (0)

serializeTo(stream, allelelump=0)
Serialize enumeration test output to stream.

Parameters

• stream (XMLOutputStream) – XML stream to use

• allelelump (int) – record allele lumping level (default 0)

class HardyWeinbergGuoThompsonArlequin(matrix=None, locusName=None, arlequinExec='arlecore.exe', markovChainStepsHW=100000,
markovChainDememorisationStepsHW=1000, untypedAllele='****')

Arlequin implementation of the Guo & Thompson algorithm.

18

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Deprecated since version 1.0.0

Deprecated since version 1.0.0.

This class extracts the Hardy-Weinberg (HW) statistics using the Arlequin implementation of the HW exact test, by the following:

1. creates a subdirectory arlequinRuns in which all the Arlequin specific files are generated;

2. then the specified arlequin executable is run, generating the Arlequin output HTML files (*.htm);

3. the Arlequin output is then parsed for the relevant statistics;

4. lastly, the arlequinRuns directory is removed.

Since the directory name arlequinRuns is currently hardcoded, this has the consequence that this class cannot be invoked concurrently.

Parameters

• matrix (StringMatrix) – matrix to extract locus from

• locusName (str) – locus to use

• arlequinExec (str) – name of Arlequin executable

• markovChainStepsHW (int) – number of steps to use in Markov chain (default: 100000).

• markovChainDememorisationStepsHW (int) – “Burn-in” time for Markov chain (default: 1000).

• untypedAllele (str) – untyped allele identifier

serializeTo(stream)
Serialize output to stream.

Parameters
stream (XMLOutputStream) – stream to serialize to

pval(chisq, dof)
Calculate p-value.

Parameters

• chisq (float) – Chi-square value

• dof (int) – degrees of freedom

Returns
p-value

Return type
float

PyPop.homozygosity
Computing homozygosity statistics on genotype or allele counts.

Classes

Homozygosity Calculate homozygosity statistics.
HomozygosityEWSlatkinExact Compute homozygosity using the Ewens-Watterson-Slatkin "exact test".
HomozygosityEWSlatkinExactPairwise Compute pairwise homozygosity using the Ewens-Watterson-Slatkin.

Functions

getObservedHomozygosityFromAlleleData(alleleData) Get homozygosity from allele data.

Module Contents

class Homozygosity(alleleData, rootPath='.')
Calculate homozygosity statistics.

Given allele count data for a given locus, calculates the observed homozygosity and returns the approximate expected homozygosity statistics taken
from previous simulation runs.

19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Parameters

• alleleData (list) – list of allele counts

• rootPath (str) – path to the root of the directory where the pre-calculated expected homozygosity statistics can be found.

getObservedHomozygosity()

Calculate and return observed homozygosity.

Available even if expected stats cannot be calculated.

Returns
observed homozygosity

Return type
float

canGenerateExpectedStats()

Can expected homozygosity stats be calculated?

Returns 1 if expected homozygosity statistics can be calculated. Should be called before attempting to get any expected homozygosity statistics.

Returns
1 if can be calculated, otherwise 0

Return type
int

getPValueRange()

Gets lower and upper bounds for p-value.

Only meaningful if canGenerateExpectedStats() returns true.

Returns
(lower, upper) bounds.

Return type
tuple

getCount()

Number of runs used to calculate statistics.

Only meaningful if canGenerateExpectedStats() returns 1.

Returns
number of runs

Return type
int

getExpectedHomozygosity()

Gets mean of expected homozygosity.

This is the estimate of the expected homozygosity. Only meaningful if canGenerateExpectedStats() returns true.

Returns
mean of expected homozygosity

Return type
float

getVarExpectedHomozygosity()

Gets variance of expected homozygosity.

This is the estimate of the variance expected homozygosity. Only meaningful if canGenerateExpectedStats() returns true.

Returns
variance of expected homozygosity

Return type
float

getNormDevHomozygosity()

Gets normalized deviate of homozygosity.

Only meaningful if canGenerateExpectedStats() returns true.

Returns
normalized deviate of homozygosity

20

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Return type
float

serializeHomozygosityTo(stream)
Serialize homozygosity to a stream.

Parameters
stream (XMLOutputStream) – stream to save to

class HomozygosityEWSlatkinExact(alleleData=None, numReplicates=10000)
Bases: Homozygosity

Homozygosity HomozygosityEWSlatkinExact

Compute homozygosity using the Ewens-Watterson-Slatkin “exact test”.

Parameters

• alleleData (list) – list of allele counts

• numReplicates (int) – number or replicates for simulation.

doCalcs(alleleData)
Run the computations.

Parameters
alleleData (list) – list of allele counts

getHomozygosity()

Get the homozygosity statistics.

Returns

tuple consisting of:

• theta

• prob_ewens

• prob_homozygosity

• mean_homozygosity

• obsv_homozygosity

• var_homozygosity

Return type
tuple

serializeHomozygosityTo(stream)
Serialize homozygosity to a stream.

Parameters
stream (XMLOutputStream) – stream to save to

returnBulkHomozygosityStats(alleleCountDict=None, binningMethod=None)
Get bulk homozygosity statistics for multiple allele counts.

This function is designed to work with the PyPop.RandomBinning submodule.

Parameters

• alleleCountDict (dict) – dictionary of lists of allele counts

• binningMethod (str) – record the binning method used

Returns
dictionary of statistics

Return type
dict

21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

class HomozygosityEWSlatkinExactPairwise(matrix=None, numReplicates=10000, untypedAllele='****')
Compute pairwise homozygosity using the Ewens-Watterson-Slatkin.

Parameters

• matrix (StringMatrix) – matrix with multiple loci columns for pairwise comparison

• numReplicates (int, optional) – number or replicates for simulation.

• untypedAllele (str, optional) – untyped allele

serializeTo(stream)
Serialize to a stream.

Parameters
stream (XMLOutputStream) – stream to save to

getObservedHomozygosityFromAlleleData(alleleData)
Get homozygosity from allele data.

Parameters
alleleData (list) – list of allele counts

Returns
observed homozygosity

Return type
float

PyPop.parsers
Parsing input population data files.

Includes ParseGenotypeFile for parsing individuals genotyped at multiple loci and ParseAlleleCountFile for parsing literature data which only includes
allele counts.

Both file formats are assumed to have a population header information with, consisting of a line of column headers (population metadata) followed by a line
with the actual data, followed by the column headers for the samples (sample metadata) followed by the sample data itself (either individuals in the genotyped
case, or alleles in the allele count case).

Classes

ParseFile Common functionality for reading the two file formats.
ParseGenotypeFile Class to parse standard datafile in genotype form.
ParseAlleleCountFile Class to parse datafile in allele count form.

Module Contents

class ParseFile(filename, validPopFields=None, validSampleFields=None, separator='\t', fieldPairDesignator='_1:_2', alleleDesignator='*',
popNameDesignator='+')

Common functionality for reading the two file formats.

Base class.

Parameters

• filename (str) – filename for the file to be parsed.

• validPopFields (str) – valid headers (one per line) for overall population data (no default)

• validSampleFields (str) – valid headers (one per line) for lines of sample data. (no default)

• separator (str, optional) – separator for adjacent fields (default: a tab stop, ‘\t’).

• fieldPairDesignator (str, optional) – consists of additions to the allele stem’ for fields grouped in pairs (allele fields)
[e.g. for ``HLA-A’, and HLA-A(2), then we use :(2), for DQA1_1 and DQA1_2, then use _1:_2, the latter case distinguishes
both fields from the stem] (default: :(2))

• alleleDesignator (str, optional) – first character of the key which determines whether this column contains allele
data. Defaults to *

• popNameDesignator (str, optional) – first character of the key which determines whether this column contains the
population name. Defaults to +

22

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

getPopData()

Returns a dictionary of population data.

Returns
keyed by types specified in population metadata file

Return type
dict

getSampleMap()

Returns dictionary of sample data.

Returns

each entry contains either a 2-tuple of column
position or a single column position keyed by field originally specified in sample metadata file

Return type
dict

getFileData()

Returns the file data.

Returns

a 2-tuple “wrapper”:

• str: raw sample lines, without header metadata.

• str: the field separator.

Return type
tuple

genSampleOutput(fieldList)
Prints the data specified in ordered field list.

Deprecated since version 0.7.0

Deprecated since version 0.7.0.

serializeMetadataTo(stream)
Write metadata to stream.

Parameters
stream (XMLStreamOutput) – output stream

class ParseGenotypeFile(filename, untypedAllele='****', **kw)
Bases: ParseFile

ParseFile ParseGenotypeFile

Class to parse standard datafile in genotype form.

Processes files that consist specifically of data with individual genotyped for one or more loci.

Parameters

• filename (str) – filename for the file to be parsed.

• untypedAllele (str, optional) – The designator for an untyped locus. Defaults to ****.

Base class.

Parameters

• filename (str) – filename for the file to be parsed.

• validPopFields (str) – valid headers (one per line) for overall population data (no default)

• validSampleFields (str) – valid headers (one per line) for lines of sample data. (no default)

• separator (str, optional) – separator for adjacent fields (default: a tab stop, ‘\t’).

• fieldPairDesignator (str, optional) – consists of additions to the allele stem’ for fields grouped in pairs (allele fields)
[e.g. for ``HLA-A’, and HLA-A(2), then we use :(2), for DQA1_1 and DQA1_2, then use _1:_2, the latter case distinguishes
both fields from the stem] (default: :(2))

23

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

• alleleDesignator (str, optional) – first character of the key which determines whether this column contains allele
data. Defaults to *

• popNameDesignator (str, optional) – first character of the key which determines whether this column contains the
population name. Defaults to +

genValidKey(field, fieldList)
Check and validate key.

• ‘field’: string with field name.

• ‘fieldList’: a dictionary of valid fields.

Check to see whether ‘field’ is a valid key, and generate the appropriate ‘key’. Returns a 2-tuple consisting of ‘isValidKey’ boolean and the
‘key’.

Note: this is explicitly done in the subclass of the abstract ‘ParseFile’ class (i.e. since this subclass should have `knowledge’ about the nature
of fields, but the abstract class should not have)

getMatrix()

Returns the genotype data.

Returns the genotype data in a ‘StringMatrix’ NumPy array.

serializeSubclassMetadataTo(stream)
Serialize subclass-specific metadata.

class ParseAlleleCountFile(filename, **kw)
Bases: ParseFile

ParseAlleleCountFileParseFile

Class to parse datafile in allele count form.

Input files consist of allele counts across a whole population. Currently only handles one locus per population. Example:

<metadata-line1>
<metadata-line2>
DQA1 count
0102 20
0103 33
...

Base class.

Parameters

• filename (str) – filename for the file to be parsed.

• validPopFields (str) – valid headers (one per line) for overall population data (no default)

• validSampleFields (str) – valid headers (one per line) for lines of sample data. (no default)

• separator (str, optional) – separator for adjacent fields (default: a tab stop, ‘\t’).

• fieldPairDesignator (str, optional) – consists of additions to the allele stem’ for fields grouped in pairs (allele fields)
[e.g. for ``HLA-A’, and HLA-A(2), then we use :(2), for DQA1_1 and DQA1_2, then use _1:_2, the latter case distinguishes
both fields from the stem] (default: :(2))

• alleleDesignator (str, optional) – first character of the key which determines whether this column contains allele
data. Defaults to *

• popNameDesignator (str, optional) – first character of the key which determines whether this column contains the
population name. Defaults to +

genValidKey(field, fieldList)
Checks validity of a field.

Parameters

• field (str) – field to check

• fieldList (str) – list that field is checked against

Returns

2-tuple of:

• boolean: whether key is valid

24

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

• str: key

Return type
tuple

Note

The first element in the fieldList is a locus name, which may contain many loci (delimited by colons :). If field in the input file
match any of these keys , this method will return the field and a valid match.

Example

If the first element of fieldList is DQA1:DRA:DQB1, then calling this function with field set to DRA, this would return (True, DRA)

serializeSubclassMetadataTo(stream)
Serialize subclass specific metadata.

Parameters
stream (XMLOutputStream) – output stream

getAlleleTable()

Get the current allele table.

Returns
keyed by allele name with value count

Return type
dict

getLocusName()

Get the locus name.

Returns
locus name

Return type
str

getMatrix()

Get the full genotype data.

Returns
containing all the genotype data

Return type
StringMatrix

PyPop.popaggregate
Module for collecting multiple population outputs.

Classes

Meta Aggregates output from multiple population runs.

Functions

translate_string_to_stdout(xslFilename, inString[, ...]) Transform XML string using XSLT and save to stdout.
translate_string_to_file(xslFilename, inString, outFile) Transform XML string using XSLT and save to file.
translate_file_to_stdout(xslFilename, inFile[, ...]) Transform XML file using XSLT and save to stdout.
translate_file_to_file(xslFilename, inFile, outFile[, ...]) Transform XML file using XSLT and save to a file.

Module Contents

25

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

class Meta(popmetabinpath=None, datapath=None, metaXSLTDirectory=None, dump_meta=False, TSV_output=True, prefixTSV=None,
PHYLIP_output=False, ihwg_output=False, batchsize=0, outputDir=None, xml_files=None)

Aggregates output from multiple population runs.

Transform a specified list of .xml output files to .tsv tab-separated values (TSV) form.

Parameters

• popmetabinpath (str) – the directory for where meta sources are kept

• datapath (str) – data where XSLT and other meta sources may be kept

• metaXSLTDirectory (str) – fallback XSLT directory

• dump_meta (bool) – create the meta.xml file (default to False,)

• TSV_output (bool) – output .tsv tables by default (enabled by default). (such tables can be used by R)

• prefixTSV (str) – prefix to use for all .tsv files

• PHYLIP_output (bool) – create PHYLIP output (disabled by default)

• ihwg_output (bool) – by default, don’t enable the 13th IHWG format headers

• batchsize (int) – size of batches to process separately (default batchsize=0, a separate batch for each file)

• outputDir (str) – output directory to write XML files to

• xml_files (list) – list of generate XML files

translate_string_to_stdout(xslFilename, inString, outputDir=None, params=None)
Transform XML string using XSLT and save to stdout.

Parameters

• xslFilename (str) – name of XSLT file

• inString (str) – XML string

• outputDir (str, optional) – name of output directory

• params (list, optional) – list of XSLT parameters

translate_string_to_file(xslFilename, inString, outFile, outputDir=None, params=None)
Transform XML string using XSLT and save to file.

Parameters

• xslFilename (str) – name of XSLT file

• inString (str) – XML string

• outFile (str) – name of output file

• outputDir (str) – name of output directory

• params (list) – list of XSLT parameters

translate_file_to_stdout(xslFilename, inFile, inputDir=None, params=None)
Transform XML file using XSLT and save to stdout.

Parameters

• xslFilename (str) – name of XSLT file

• inFile (str) – name of input XML file

• inputDir (str, optional) – name of input directory

• params (list, optional) – list of XSLT parameters

Returns
consisting of a bool (transformation successful) and str (output)

Return type
tuple

26

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

translate_file_to_file(xslFilename, inFile, outFile, inputDir=None, outputDir=None, params=None)
Transform XML file using XSLT and save to a file.

Parameters

• xslFilename (str) – name of XSLT file

• inFile (str) – name of input XML file

• outFile (str) – name of output file

• inputDir (str, optional) – name of input directory

• outputDir (str, optional) – name of output directory

• params (list, optional) – list of XSLT parameters

Returns
transformation successful

Return type
bool

PyPop.popanalysis
Primary access to PyPop’s population genetics statistics modules.

This module handles processing configparser.ConfigParser18instance. The Main class coordinates running the analysis packages specified in this
configparser.ConfigParser19instance which can be:

• created from a filename passed from command-line argument oar;

• from values populated by the GUI (for example, selected from an .ini file,

• created programmatically as part of an external Python program

Here is an example of calling Main programmatically, explicitly specifying the untypedAllele and alleleDesignator in the .pop file:

>>> from PyPop.popanalysis import Main
>>> from configparser import ConfigParser
>>>
>>> config = ConfigParser()
>>> config.read_dict({
... "ParseGenotypeFile": {"untypedAllele": "****",
... "alleleDesignator": "*",
... "validSampleFields": "*a_1\n*a_2"}})
>>>
>>> pop_contents = '''a_1\ta_2
... ****\t****
... 01:01\t02:01
... 02:10\t03:01:02'''
>>> with open("my.pop", "w") as f:
... _ = f.write(pop_contents)
...
>>> application = Main(
... config=config,
... fileName="my.pop",
... version="fake",
...)
LOG: no XSL file, skipping text output
LOG: Data file has no header data block

Classes

Main Main interface to the PyPop modules.

Functions

getConfigInstance([configFilename, altpath]) Create and return ConfigParser instance.
get_sequence_directory(directory_str) Get the directory for the PyPop.Filter.AnthonyNolanFilter.

Module Contents

27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

class Main(config=None, xslFilename=None, xslFilenameDefault=None, fileName=None, datapath=None, thread=None, outputDir=None,
version=None, testMode=False)

Main interface to the PyPop modules.

Runs the analyses specified in the configuration object provided to the config parameter, and an input fileName, and generates an output XML
file. The XML output file name, appends -out.xml on to the stem of the provided fileName. For example, if fileName="MyPopulation.pop"
is provided as a parameter, the output XML file will be MyPopulation-out.xml.

Changed in version 1.4.0

Changed in version 1.4.0: If an xslFilename or xslFilenameDefault is provided, also generate a plain text output. Otherwise no text
output is generated. Previous to this version, if neither were provided, the program would exit with an error.

Parameters

• config (configparser.ConfigParser20) – configure object

• xslFilename (str, optional) – XSLT file to use

• xslFilenameDefault (str, optional) – fallback file name

• fileName (str) – input .pop file

• datapath (str, optional) – root of data path

• thread (str, optional) – specified thread

• outputDir (str, optional) – use a different output directory than default

• version (str, optional) – current Python version for output

• testMode (bool, optional) – enable testing mode

getXmlOutPath()

Get name of XML file.

Returns
return XML file name

Return type
XMLOutputStream

getTxtOutPath()

Get name of .txt output file.

Returns
return txt file name

Return type
TextOutputStream

getConfigInstance(configFilename=None, altpath=None)
Create and return ConfigParser instance.

Parameters

• configFilename (str) – a specified .ini filename

• altpath (str) – an alternative path to search if no .ini filename provided in configFilename

Returns
configuration object

Return type
configparser.ConfigParser21

get_sequence_directory(directory_str)
Get the directory for the PyPop.Filter.AnthonyNolanFilter.

Parameters
directory_str (str) – directory to search

Returns
path to sequence files

Return type
str

28

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyPop.popmeta
Command-line interface for popmeta.

Functions

main([argv]) Entry point for popmeta script.

Module Contents

main(argv=sys.argv)
Entry point for popmeta script.

Parameters
argv (list) – list of command-line options (default is sys.argv)

PyPop.pypop
Command-line interface for pypop.

Functions

main([argv]) Entry point for pypop script.
main_interactive([argv]) Entry point for interactive mode script pypop-interactive.

Module Contents

main(argv=sys.argv)
Entry point for pypop script.

Parameters
argv (list) – list of command-line options (default is sys.argv)

main_interactive(argv=sys.argv)
Entry point for interactive mode script pypop-interactive.

Parameters
argv (list) – list of command-line options (default is sys.argv)

PyPop.randombinning
Generating randomized sets allele counts for statistical analyses.

Classes

RandomBinsForHomozygosity Generate randomized sets of bins for homozygosity analysis.

Module Contents

class RandomBinsForHomozygosity(logFile=None, untypedAllele='****', filename=None, numReplicates=10000, binningReplicates=100,
locus=None, xmlfile=None, randomResultsFileName=None)

Generate randomized sets of bins for homozygosity analysis.

Parameters

• logFile (str) – output log file

• untypedAllele (str, optional) – untyped allele (default ****)

• filename (str) – input filename

• numReplicates (int, optional) – replicates (default 10000)

• binningReplicates (int, optional) – replicates for binning (default 100)

• locus (str) – locus name

29

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

• xmlfile (XMLOutputStream, optional) – output stream

• randomResultsFileName (str) – output file for the randomized results

randomMethod(alleleCountsBefore=None, alleleCountsAfter=None)
Do binning replicates with random-based method.

Parameters

• alleleCountsBefore (list) – allele counts before binning

• alleleCountsAfter (list) – allele counts after binning

sequenceMethod(alleleCountsBefore=None, alleleCountsAfter=None, polyseq=None, polyseqpos=None)
Do binning replicates with sequence-based method.

Parameters

• alleleCountsBefore (list) – allele counts before binning

• alleleCountsAfter (list) – allele counts after binning

• polyseq (dict) – Keyed on locus*allele of all allele sequences, containing ONLY the polymorphic positions.

• polyseqpos (dict) – Keyed on locus of the positions of the polymorphic residues which you find in polyseq.

PyPop.utils
Module for common utility classes and functions.

Contains convenience classes for output of text and XML files.

Attributes

GENOTYPE_SEPARATOR Separator between genotypes
GENOTYPE_TERMINATOR Terminator of genotypes

Classes

TextOutputStream Output stream for writing text files.
XMLOutputStream Output stream for writing XML files.
StringMatrix Matrix of strings and other metadata from input file to PyPop.
Group Group list or sequence into non-overlapping chunks.

Functions

critical_exit(message, *args) Log a CRITICAL message and exit with status 1.
getStreamType(stream) Get the type of stream.
glob_with_pathlib(pattern) Use globbing with pathlib.
natural_sort_key(s[, _nsre]) Generate a key for natural (human-friendly) sorting.
unique_elements(li) Gets the unique elements in a list.
appendTo2dList(aList[, appendStr]) Append a string to each element in a list.
convertLineEndings(file, mode) Convert line endings based on platform.
fixForPlatform(filename[, txt_ext]) Fix for some Windws/MS-DOS platforms.
copyfileCustomPlatform(src, dest[, txt_ext]) Copy file to file with fixes.
copyCustomPlatform(file, dist_dir[, txt_ext]) Copy file to directory with fixes.
checkXSLFile(xslFilename[, path, subdir, abort, msg]) Check XSL filename and return full path.
getUserFilenameInput(prompt, filename) Get user filename input.
splitIntoNGroups(alist[, n]) Divides a list up into n parcels (plus whatever is left over).

Module Contents

GENOTYPE_SEPARATOR = '~'

Separator between genotypes

30

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Example

In a haplotype 01:01~13:01~04:02

GENOTYPE_TERMINATOR = '~'

Terminator of genotypes

Example

`02:01:01:01~

class TextOutputStream(file)
Output stream for writing text files.

Parameters
file (file) – file handle

write(str)
Write to stream.

Parameters
str (str) – string to write

writeln(str='\n')
Write a newline to stream.

Parameters
str (str, optional) – defaults to newline

close()

Close stream.

flush()

Flush to disk.

class XMLOutputStream(file)
Bases: TextOutputStream

TextOutputStream XMLOutputStream

Output stream for writing XML files.

opentag(tagname, **kw)
Write an open XML tag to stream.

Tag attributes passed as optional named keyword arguments.

Example

opentag('tagname', role=something, id=else)

produces the result:

<tagname role="something" id="else">

Attribute and values are optional:

opentag('tagname')

Produces:

<tagname>

/ See also

Must be be followed by a closetag().

Parameters
tagname (str) – name of XML tag

31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

emptytag(tagname, **kw)
Write an empty XML tag to stream.

This follows the same syntax as opentag() but without XML content (but can contain attributes).

Example

`emptytag('tagname', attr='val')

produces:

<tagname attr="val"/>

Parameters
tagname (str) – name of XML tag

closetag(tagname)
Write a closing XML tag to stream.

Example

closetag('tagname')

Generate a tag in the form:

</tagname>

/ See also

Must be be preceded by a opentag().

Parameters
tagname (str) – name of XML tag

tagContents(tagname, content, **kw)
Write XML tags around contents to a stream.

Example

tagContents('tagname', 'foo bar')

produces:

<tagname>foo bar</tagname>`

Parameters

• tagname (str) – name of XML tag

• content (str) – must only be a string. &, < and > are converted into valid XML equivalents.

class StringMatrix(rowCount=None, colList=None, extraList=None, colSep='\t', headerLines=None)

Bases: collections.abc.Sequence22

Collection

Sequence

Sized

Iterable Reversible

Container

StringMatrix

Matrix of strings and other metadata from input file to PyPop.

StringMatrix is a subclass of collections.abc.Sequence23and represents genotype or locus-based data in a row-oriented matrix structure with
NumPy-style indexing and sequence semantics. Rows correspond to individuals, and columns correspond to loci.

The object supports indexing, assignment, copying, and printing using standard Python and NumPy idioms.

32

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

Parameters

• rowCount (int) – number of rows in matrix

• colList (list) – list of locus keys in a specified order

• extraList (list) – other non-matrix metadata

• colSep (str) – column separator

• headerLines (list) – list of lines in the header of original file

Note

• len(matrix) returns the number of rows.

• Indexing retrieves data by locus or locus combinations.

• Assignment updates genotype or metadata values in place.

• Slicing over rows (e.g., matrix[i:j]) is not currently supported.

• Deep copying produces a fully independent matrix.

Examples

Create a matrix of two individuals with two loci and assign genotype data:

>>> matrix = StringMatrix(2, ["A", "B"])
>>> matrix [0, "A"] = ("A0_1", "A0_2")
>>> matrix [1, "A"] = ("A1_1", "A1_2")
>>> matrix [0, "B"] = ("B0_1", "B0_2")
>>> matrix [1, "B"] = ("B1_1", "B1_2")

Length of matrix is defined as the number of individuals in the matrix:

>>> len(matrix)
2

Retrieve data for a single locus:

>>> matrix["A"]
[['A0_1', 'A0_2'], ['A1_1', 'A1_2']]

String representation:

>>> print (matrix)
StringMatrix([['A0_1', 'A0_2', 'B0_1', 'B0_2'],

['A1_1', 'A1_2', 'B1_1', 'B1_2']], dtype=object)

Copying the matrix:

>>> import copy
>>> m2 = copy.deepcopy(matrix)
>>> m2 is matrix
False

__repr__()

Override default representation.

Returns
new string representation

Return type
str

__len__()

Get number of rows (individuals) in the matrix.

This allows StringMatrix instances to be used with len(), iteration, and other Python sequence protocols.

Returns
number of rows in the matrix

Return type
int

33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

__deepcopy__(memo)
Create a deepcopy for copy.deepcopy.

This simply calls self.copy() to allow copy.deepcopy(matrixInstance) to work out of the box.

Parameters
memo (dict) – opaque object

Returns
copy of the matrix

Return type
StringMatrix

__getslice__(i, j)
Get slice (overrides built-in).

í Warning

Currently not supported for StringMatrix

__getitem__(key)
Get the item at given key (overrides built-in numpy).

Parameters
key (str) – locus key

Returns
a list (a single column vector if only one position specified), or list of lists: (a set of column vectors if several positions
specified) of tuples for key

Return type
list

Raises
KeyError24– if key is not found, or of wrong type

__setitem__(index, value)
Set the value at an index (override built in).

Parameters

• index (tuple) – index into matrix

• value (tuple|str) – can set using a tuple of strings, or a single string (for metadata)

Raises

• IndexError25– if index is not a tuple

• ValueError26– if value is not a tuple or string

• KeyError27– if the index can’t be found

dump(locus=None, stream=sys.stdout)
Write file to a stream in original format.

Parameters

• locus (str, optional) – write just specified locus, if omitted, default to all loci

• stream (TextOutputStream|XMLOutputStream|stdout) – output stream

copy()

Make a (deep) copy.

Returns
a deep copy of the current object

Return type
StringMatrix

getNewStringMatrix(key)
Create new StringMatrix containing specified loci.

34

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str

Note

The format of the keys is identical to __getitem__() except that it returns a full StringMatrix instance which includes all metadata

Parameters
key (str) – a string representing the loci, using the locus1:locus2 format

Returns
full instance

Return type
StringMatrix

Raises
KeyError28– if locus can not be found.

getUniqueAlleles(key)
Get naturally sorted list of unique alleles.

Parameters
key (str) – loci to get

Returns
list of unique integers sorted by allele name using natural sort

Return type
list

convertToInts()

Convert the matrix to integers.

Note

This function is used by the PyPop.haplo.Haplostats class. Note that integers start at 1 for compatibility with haplo-stats module

Returns
matrix where the original allele names are now represented by integers

Return type
StringMatrix

countPairs()

Count all possible pairs of haplotypes for each matrix row.

í Warning

This does not do any involved handling of missing data as per geno.count.pairs from R haplo.stats module.

Returns
each element is the number of pairs in row order

Return type
list

flattenCols()

Flatten columns into a single list.

(Important

Currently assumes entries are integers.

Returns
all alleles, the two genotype columns concatenated for each locus

35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Return type
list

filterOut(key, blankDesignator)
Get matrix rows filtered by a designator.

Parameters

• key (str) – locus to filter

• blankDesignator (str) – string to exclude

Returns
the rows of the matrix that do not contain blankDesignator at any rows

Return type
list

getSuperType(key)
Get a matrix grouped by specified key.

Example

Return a new matrix with the column vector with the alleles for each genotype concatenated like so:

>>> matrix = StringMatrix(2, ["A", "B"])
>>> matrix[0, "A"] = ("A01", "A02")
>>> matrix[1, "A"] = ("A11", "A12")
>>> matrix[0, "B"] = ("B01", "B02")
>>> matrix[1, "B"] = ("B11", "B12")
>>> print(matrix)
StringMatrix([['A01', 'A02', 'B01', 'B02'],

['A11', 'A12', 'B11', 'B12']], dtype=object)
>>> matrix.getSuperType("A:B")
StringMatrix([['A01:B01', 'A02:B02'],

['A11:B11', 'A12:B12']], dtype=object)

Parameters
key (str) – loci to group

Returns
a new matrix with the columns concatenated

Return type
StringMatrix

class Group(li, size)
Group list or sequence into non-overlapping chunks.

Example

>>> for pair in Group('aabbccddee', 2):
... print(pair)
...
aa
bb
cc
dd
ee

>>> a = Group('aabbccddee', 2)
>>> a[0]
'aa'
>>> a[3]
'dd'

Parameters

• li (str|list) – string or list

• size (int) – size of grouping

36

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

__getitem__(group)
Get the item by position.

Parameters
group (int) – get the item by position

Returns
the value at that position

Return type
str|list

Raises
IndexError29– if group is out of bounds

critical_exit(message, *args)
Log a CRITICAL message and exit with status 1.

Added in version 1.4.0

Added in version 1.4.0.

Parameters
message (str) – Logging format string.

getStreamType(stream)
Get the type of stream.

Parameters
stream (TextOutputStream|XMLOutputStream) – stream to check

Returns
either xml or text.

Return type
string

glob_with_pathlib(pattern)
Use globbing with pathlib.

Parameters
pattern (str) – globbing pattern

Returns
of pathlib globs

Return type
list

natural_sort_key(s, _nsre=re.compile('([0-9]+)'))
Generate a key for natural (human-friendly) sorting.

This function splits a string into text and number components so that numbers are compared by value instead of lexicographically. It is intended for
use as the key function in list.sort() or sorted().

Example

>>> items = ["item2", "item10", "item1"]
>>> sorted(items, key=natural_sort_key)
['item1', 'item2', 'item10']

Parameters

• s (str) – The string to split into text and number components.

• _nsre (Pattern) – Precompiled regular expression used internally to split the string into digit and non-digit chunks. This
is not intended to be overridden in normal use.

Returns
A list of strings and integers to be used as a sort key.

Return type
list

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

unique_elements(li)
Gets the unique elements in a list.

Parameters
li (list) – a list

Returns
unique elements

Return type
list

appendTo2dList(aList, appendStr=':')
Append a string to each element in a list.

Parameters

• aList (list) – list to append to

• appendStr (str) – string to append

Returns
a list with string appended to each element

Return type
list

convertLineEndings(file, mode)
Convert line endings based on platform.

Parameters

• file (str) – file name to convert

• mode (int) – Conversion mode, one of

– 1 Unix to Mac

– 2 Unix to DOS

fixForPlatform(filename, txt_ext=0)
Fix for some Windws/MS-DOS platforms.

Parameters

• filename (str) – path to file

• txt_ext (int, optional) – if enabled (1) add a .txt extension

copyfileCustomPlatform(src, dest, txt_ext=0)
Copy file to file with fixes.

Parameters

• src (str) – source file

• dest (str) – source file

• txt_ext (int, optional) – if enabled (1) add a .txt extension

copyCustomPlatform(file, dist_dir, txt_ext=0)
Copy file to directory with fixes.

Parameters

• file (str) – source file

• dist_dir (str) – source directory

• txt_ext (int, optional) – if enabled (1) add a .txt extension

checkXSLFile(xslFilename, path='', subdir='', abort=False, msg='')
Check XSL filename and return full path.

Parameters

• xslFilename (str) – name of the XSL file

• path (str) – root path to check

• subdir (str) – subdirectory under path to check

38

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

• abort (bool) – if enabled (True) file isn’t found, exit with an error. Default is False

• msg (str) – output message on abort

Returns
checked and validaated path

Return type
str

getUserFilenameInput(prompt, filename)
Get user filename input.

Read user input for a filename, check its existence, continue requesting input until a valid filename is entered.

Parameters

• prompt (str) – description of file

• filename (str) – default filename

Returns
name of file eventually selected

Return type
str

splitIntoNGroups(alist, n=1)
Divides a list up into n parcels (plus whatever is left over).

Example

>>> a = ['A', 'B', 'C', 'D', 'E']
>>> splitIntoNGroups(a, 2)
[['A', 'B'], ['C', 'D'], ['E']]

Parameters

• alist (list) – list to divide up

• n (int) – parcel size

Returns
list of lists

Return type
list

PyPop.xslt
Python XSLT extensions for handling things outside the scope of XSLT 1.0.

Attributes

ns Function namespace for custom PyPop XSLT extension functions.

Functions

num_zeros(decimal) Count zeroes.
exponent_len(num) Calculate space taken for exponent.
format_number_fixed_width (_context, *args) Format number to fixed width.

Package Contents

ns

Function namespace for custom PyPop XSLT extension functions.

This namespace allows registering Python functions that can be called directly from XSLT stylesheets.

39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

prefix

The namespace prefix used in XSLT stylesheets. Here it is set to "es", so extension functions are invoked as
es:format_number_fixed_width(...). See example in format_number_fixed_width()

Type
str

num_zeros(decimal)
Count zeroes.

Parameters
decimal (float) – number to check

Returns
number of zeroes in floating point number, or inf if number is zero

Return type
int

exponent_len(num)
Calculate space taken for exponent.

Example

>>> exponent_len(1e-03)
2
>>> exponent_len(1e-10)
3

Parameters
num (float) – input number

Returns
length of exponent

Return type
int

format_number_fixed_width(_context, *args)
Format number to fixed width.

Example

>>> ns["format_number_fixed_width"] = format_number_fixed_width
>>> root = etree.XML("<a>0.0000043")
>>> doc = etree.ElementTree(root)
>>> xslt = etree.XSLT(etree.XML('''
... <stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform" xmlns:es="http://pypop.org/lxml/functions">
... <output method="text" encoding="ASCII"/>
... <template match="/">
... <text>Yep [</text>
... <value-of select="es:format_number_fixed_width(string(/a/b), 5)"/>
... <text>]</text>
... </template>
... </stylesheet>
... '''))
>>>
>>> print(xslt(doc))
Yep [4.3e-6]

Note

arguments from XSLT file: num and places are encoded in *args.

Parameters
_context (obj) – not used

Returns
formatted number to fixed width

Return type
str

40

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

4 Deprecated Submodules

PyPop.arlequin
Provides Arlequin functionality in Python.

Deprecated since version 1.0.0

Deprecated since version 1.0.0: Only works for an obsolete version of Arlequin.

Attributes

usage_message

Classes

ArlequinWrapper Wraps the functionality of the Arlequin30program.
ArlequinExactHWTest Wraps the Arlequin Hardy-Weinberg exact functionality.
ArlequinBatch A wrapper for running Arlequin from the command-line.

Module Contents

class ArlequinWrapper(matrix=None, arlequinPrefix='arl_run', arlequinExec='arlecore.exe', untypedAllele='****', arpFilename='output.arp',
arsFilename='arl_run.ars')

Wraps the functionality of the Arlequin31program.

Parameters

• matrix (StringMatrix) – matrix

• arlequinPrefix (str, optional) – directory prefix (default arl_run)

• arlequinExec (str, optional) – executable program (default arlecore.exe)

• untypedAllele (str, optional) – untyped allele designator (default ****)

• arpFilename (str, optional) – default output file name (default output.arp)

• arsFilename (str, optional) – default run file name (default arl_run.ars)

outputArpFile(group)
Output the .arp file.

Parameters
group (list) – list of loci to pass to Arlequin

outputArsFile(arsFilename, arsContents)
Outputs the run-time Arlequin program file.

Parameters

• arsFilename (str) – name of file

• arsContents (str) – contents of file

outputRunFiles()

Generates the expected ‘.txt’ set-up files for Arlequin.

runArlequin()

Run the Arlequin haplotyping program.

Forks a copy of arlecore.exe, which must be on PATH to actually generate the desired statistics estimates from the generated .arp file.

cleanup()

Remove the working Arlequin subdirectory.

41

http://lgb.unige.ch/arlequin/
http://lgb.unige.ch/arlequin/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

class ArlequinExactHWTest(matrix=None, lociList=None, markovChainStepsHW=100000, markovChainDememorisationStepsHW=1000, **kw)
Bases: ArlequinWrapper

ArlequinExactHWTestArlequinWrapper

Wraps the Arlequin Hardy-Weinberg exact functionality.

Run Hardy-Weinberg exact test on list specified in lociList.

hwExactTest

standard config options for Arlequin

Type
str

Parameters

• matrix (StringMatrix) – StringMatrix for testing

• lociList (list) – list of loci

• markovChainStepsHW (int, optional) – Number of steps to use in Markov chain (default: 100000)

• markovChainDememorisationStepsHW (int, optional) – “Burn-in” time for Markov chain (default: 1000).

getHWExactTest()

Returns a dictionary of loci.

Returns

Each dictionary element contains a tuple of the results from the Arlequin implementation of the Hardy-Weinberg exact test,
namely:

• number of genotypes,

• observed heterozygosity,

• expected heterozygosity,

• the p-value,

• the standard deviation,

• number of steps,

If locus is monomorphic, the HW exact test can’t be run, and the contents of the dictionary element simply contains the string
monomorphic, rather than the tuple of values.

Return type
dict

class ArlequinBatch(arpFilename, arsFilename, idCol, prefixCols, suffixCols, windowSize, mapOrder=None, untypedAllele='0',
arlequinPrefix='arl_run')

A wrapper for running Arlequin from the command-line.

Given a delimited text file of multi-locus genotype data: provides methods to output Arlequin format data files and runtime info and execution of
Arlequin itself. Used to provide a “batch” (i.e. command line) mode for generating appropriate Arlequin input files and for forking Arlequin itself.

Parameters

• arpFilename (str) – Arlequin filename (must have .arp file extension)

• arsFilename (str) – Arlequin settings filename (must have .ars file extension)

• idCol (str) – column in input file that contains the individual id.

• prefixCols (int) – number of columns to ignore before allele data starts

• suffixCols (int) – number of columns to ignore after allele data stops

• windowSize (int) – size of sliding window

• mapOrder (list, optional) – list order of columns if different to column order in file (defaults to order in file)

• untypedAllele (str, optional) – (defaults to 0)

• arlequinPrefix (str, optional) – prefix for all Arlequin run-time files (defaults to arl_run).

42

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

outputArlequin(data)
Outputs the specified .arp sample file.

Parameters
data (list) – list of lines of data.

outputRunFiles()

Generates the expected set-up files for Arlequin.

Includes .txt and .ars file names.

runArlequin()

Run the Arlequin haplotyping program.

Forks a copy of arlecore.exe, which must be on PATH to actually generate the desired statistics estimates from the generated .arp file.

usage_message = Multiline-String

"""Usage: Arlequin.py [OPTION] INPUTFILE ARPFILE ARSFILE
Process a tab-delimited INPUTFILE of alleles to produce an data files
(including ARPFILE), using parameters from ARSFILE for the Arlequin population
genetics program.

-i, --idcol=NUM column number of identifier (first column is zero)
-l, --ignorelines=NUM number of header lines to ignore in in file
-c, --cols=POS1,POS2 number of leading columns (POS1) before start and

number of trailing columns before the end (POS2) of
allele data (including IDCOL)

-k, --sort=POS1,.. specify order of loci if different from column order
in file (must not repeat a locus)

-w, --windowsize=NUM number of loci involved in window size
(note that this is half the number of allele columns)

-u, --untyped=STR the string that represents `untyped' alleles
(defaults to '****')

-x, --execute execute the Arlequin program
-h, --help this message
-d, --debug switch on debugging

INPUTFILE input text file
ARPFILE output Arlequin '.arp' project file
ARSFILE input Arlequin '.ars' settings file"""

5 Attributes

logger Package-wide logger used throughout a PyPop run.
__version__ PyPop version. If installed, this is the package version, otherwise it returns

repository version.
copyright_message copyright information used in --help screens and elsewhere
platform_info platform information used in --help screens and elsewhere

6 Exceptions

PyPopModuleRenameDeprecationWarning Deprecation warning for PyPop module renames.

7 Functions

setup_logger([level, filename, doctest_mode]) Configure the 'pypop' logger with stdout/file handler, optional debug ver-
bosity, and doctest mode.

8 Package Contents
exception PyPopModuleRenameDeprecationWarning

Bases: DeprecationWarning32

43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#DeprecationWarning

PyPopModuleRenameDeprecationWarning

Deprecation warning for PyPop module renames.

Added in version 1.4.0

Added in version 1.4.0.

Initialize self. See help(type(self)) for accurate signature.

logger

Package-wide logger used throughout a PyPop run.

Added in version 1.4.0

Added in version 1.4.0.

__version__

PyPop version. If installed, this is the package version, otherwise it returns repository version.

copyright_message = Multiline-String

"""Copyright (C) 2003-2006 Regents of the University of California.
Copyright (C) 2007-2025 PyPop team.
This is free software. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."""

copyright information used in --help screens and elsewhere

platform_info = '[Python Uninferable | Uninferable | Uninferable]'

platform information used in --help screens and elsewhere

setup_logger(level=logging.INFO, filename=None, doctest_mode=True)
Configure the ‘pypop’ logger with stdout/file handler, optional debug verbosity, and doctest mode.

Added in version 1.4.0

Added in version 1.4.0.

Parameters

• level (str, optional) – INFO (default), DEBUG (more detailed), WARNING, CRITICAL

• filename (str, optional) – Optional file to log to. If None, logs to stdout.

• doctest_mode (bool, optional) – If True, forcibly rebinds the logger to sys.stdout and disables propagation so doctests
see output.

9 GNU Free Documentation License
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

44

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version
as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

45

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4. above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to
permit their use in free software.

"""

46

http://www.gnu.org/copyleft/

Python Module Index
p
PyPop, 2
PyPop.arlequin, 41
PyPop.citation, 3
PyPop.command_line_interface, 3
PyPop.datatypes, 5
PyPop.filters, 8
PyPop.haplo, 13
PyPop.hardyweinberg, 16
PyPop.homozygosity, 19
PyPop.parsers, 22
PyPop.popaggregate, 25
PyPop.popanalysis, 27
PyPop.popmeta, 29
PyPop.pypop, 29
PyPop.randombinning, 29
PyPop.utils, 30
PyPop.xslt, 39

47

Notes

1. https://github.com/readthedocs/sphinx-autoapi

2. http://pypop.org/docs

3. http://pypop.org/pypop-guide-1.4.0.pdf

4. https://peps.python.org/pep-0008/#package-and-module-names

5. https://docs.python.org/3/library/exceptions.html#DeprecationWarning

6. https://docs.python.org/3/library/exceptions.html#UserWarning

7. https://docs.python.org/3/library/collections.html#collections.OrderedDict

8. https://docs.python.org/3/library/collections.html#collections.OrderedDict

9. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

10. https://docs.python.org/3/library/argparse.html#argparse.Action

11. https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

12. https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

13. https://docs.python.org/3/library/exceptions.html#Exception

14. https://docs.python.org/3/library/abc.html#abc.ABC

15. https://github.com/ANHIG/IMGTHLA/

16. https://docs.python.org/3/library/exceptions.html#RuntimeError

17. https://github.com/ANHIG/IMGTHLA/

18. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

19. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

20. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

21. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

22. https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

23. https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

24. https://docs.python.org/3/library/exceptions.html#KeyError

25. https://docs.python.org/3/library/exceptions.html#IndexError

26. https://docs.python.org/3/library/exceptions.html#ValueError

27. https://docs.python.org/3/library/exceptions.html#KeyError

28. https://docs.python.org/3/library/exceptions.html#KeyError

29. https://docs.python.org/3/library/exceptions.html#IndexError

30. http://lgb.unige.ch/arlequin/

31. http://lgb.unige.ch/arlequin/

32. https://docs.python.org/3/library/exceptions.html#DeprecationWarning

48

Index

Symbols
__call__() (CitationAction method), 4
__deepcopy__() (StringMatrix method), 33
__getitem__() (Group method), 36
__getitem__() (StringMatrix method), 34
__getslice__() (StringMatrix method), 34
__len__() (StringMatrix method), 33
__repr__() (StringMatrix method), 33
__setitem__() (StringMatrix method), 34
__str__() (SubclassError method), 8
__version__ (in module PyPop), 44

A
addAllele() (AnthonyNolanFilter method), 10
addAllele() (Filter method), 8
addAllele() (PassThroughFilter method), 9
AlleleCountAnthonyNolanFilter (class in PyPop.filters), 12
AlleleCounts (class in PyPop.datatypes), 6
allPairwise() (Emhaplofreq method), 14
allPairwise() (Haplostats method), 15
AnthonyNolanFilter (class in PyPop.filters), 9
appendTo2dList() (in module PyPop.utils), 38
ArlequinBatch (class in PyPop.arlequin), 42
ArlequinExactHWTest (class in PyPop.arlequin), 41
ArlequinWrapper (class in PyPop.arlequin), 41

B
BinningFilter (class in PyPop.filters), 11

C
canGenerateExpectedStats() (Homozygosity method), 20
checkAlleleName() (AnthonyNolanFilter method), 10
checkAlleleName() (Filter method), 8
checkAlleleName() (PassThroughFilter method), 9
checkIfSequenceData() (in module PyPop.datatypes), 7
checkXSLFile() (in module PyPop.utils), 38
citation_output_formats (in module PyPop.citation), 3
CitationAction (class in PyPop.command_line_interface), 4
cleanup() (AnthonyNolanFilter method), 11
cleanup() (ArlequinWrapper method), 41
cleanup() (Filter method), 8
cleanup() (PassThroughFilter method), 9
close() (TextOutputStream method), 31
closetag() (XMLOutputStream method), 32
convert_citation_formats() (in module PyPop.citation), 3
convertLineEndings() (in module PyPop.utils), 38
convertToInts() (StringMatrix method), 35
copy() (StringMatrix method), 34
copyCustomPlatform() (in module PyPop.utils), 38
copyfileCustomPlatform() (in module PyPop.utils), 38
copyright_message (in module PyPop), 44
countPairs() (StringMatrix method), 35
critical_exit() (in module PyPop.utils), 37

D
doCalcs() (HomozygosityEWSlatkinExact method), 21
doCustomBinning() (BinningFilter method), 12
doDigitBinning() (BinningFilter method), 12
doFiltering() (AnthonyNolanFilter method), 10
doFiltering() (Filter method), 8
doFiltering() (PassThroughFilter method), 9
dump() (StringMatrix method), 34
dumpTable() (HardyWeinbergGuoThompson method), 18

E
Emhaplofreq (class in PyPop.haplo), 13
emptytag() (XMLOutputStream method), 31
endFiltering() (AnthonyNolanFilter method), 11
endFiltering() (Filter method), 8
endFiltering() (PassThroughFilter method), 9
endFirstPass() (AlleleCountAnthonyNolanFilter method), 13
endFirstPass() (AnthonyNolanFilter method), 10
endFirstPass() (Filter method), 8
endFirstPass() (PassThroughFilter method), 9
estHaplotypes() (Emhaplofreq method), 14
estHaplotypes() (Haplostats method), 15
estLinkageDisequilibrium() (Emhaplofreq method), 14
exponent_len() (in module PyPop.xslt), 40

F
Filter (class in PyPop.filters), 8
filterAllele() (AnthonyNolanFilter method), 10
filterAllele() (Filter method), 8
filterAllele() (PassThroughFilter method), 9
filterOut() (StringMatrix method), 36
fixForPlatform() (in module PyPop.utils), 38
flattenCols() (StringMatrix method), 35
flush() (TextOutputStream method), 31
format_number_fixed_width() (in module PyPop.xslt), 40

G
generateFlattenedMatrix() (HardyWeinbergGuoThompson method),

18
genHaplotypes() (HaploArlequin method), 16
GENOTYPE_SEPARATOR (in module PyPop.utils), 30
GENOTYPE_TERMINATOR (in module PyPop.utils), 31
Genotypes (class in PyPop.datatypes), 5
genSampleOutput() (ParseFile method), 23
genValidKey() (ParseAlleleCountFile method), 24
genValidKey() (ParseGenotypeFile method), 24
get_parent_cli() (in module PyPop.command_line_interface), 4
get_popmeta_cli() (in module PyPop.command_line_interface), 4
get_pypop_cli() (in module PyPop.command_line_interface), 4
get_sequence_directory() (in module PyPop.popanalysis), 28
getAlleleCount() (AlleleCounts method), 7
getAlleleCount() (Genotypes method), 5
getAlleleCountAt() (Genotypes method), 5
getAlleleTable() (ParseAlleleCountFile method), 25
getConfigInstance() (in module PyPop.popanalysis), 28
getCount() (Homozygosity method), 20
getExpectedHomozygosity() (Homozygosity method), 20
getFileData() (ParseFile method), 23
getHomozygosity() (HomozygosityEWSlatkinExact method), 21
getHWExactTest() (ArlequinExactHWTest method), 42
getIndividualsData() (Genotypes method), 6
getLocusData() (Genotypes method), 6
getLocusDataAt() (Genotypes method), 6
getLocusList() (Genotypes method), 5
getLocusName() (AlleleCounts method), 7
getLocusName() (ParseAlleleCountFile method), 25
getLocusPairs() (in module PyPop.datatypes), 7
getLumpedDataLevels() (in module PyPop.datatypes), 7
getMatrix() (ParseAlleleCountFile method), 25
getMatrix() (ParseGenotypeFile method), 24
getMetaLocus() (in module PyPop.datatypes), 7
getNewStringMatrix() (StringMatrix method), 34
getNormDevHomozygosity() (Homozygosity method), 20
getObservedHomozygosity() (Homozygosity method), 20
getObservedHomozygosityFromAlleleData() (in module Py-

Pop.homozygosity), 22

49

getPopData() (ParseFile method), 22
getPValueRange() (Homozygosity method), 20
getSampleMap() (ParseFile method), 23
getStreamType() (in module PyPop.utils), 37
getSuperType() (StringMatrix method), 36
getTxtOutPath() (Main method), 28
getUniqueAlleles() (StringMatrix method), 35
getUserFilenameInput() (in module PyPop.utils), 39
getVarExpectedHomozygosity() (Homozygosity method), 20
getXmlOutPath() (Main method), 28
glob_with_pathlib() (in module PyPop.utils), 37
Group (class in PyPop.utils), 36

H
Haplo (class in PyPop.haplo), 13
HaploArlequin (class in PyPop.haplo), 16
Haplostats (class in PyPop.haplo), 15
HardyWeinberg (class in PyPop.hardyweinberg), 17
HardyWeinbergEnumeration (class in PyPop.hardyweinberg), 18
HardyWeinbergGuoThompson (class in PyPop.hardyweinberg), 17
HardyWeinbergGuoThompsonArlequin (class in PyPop.hardyweinberg),

18
Homozygosity (class in PyPop.homozygosity), 19
HomozygosityEWSlatkinExact (class in PyPop.homozygosity), 21
HomozygosityEWSlatkinExactPairwise (class in PyPop.homozygosity),

21
hwExactTest (ArlequinExactHWTest attribute), 42

L
logger (in module PyPop), 44
lookupCustomBinning() (BinningFilter method), 12

M
Main (class in PyPop.popanalysis), 27
main() (in module PyPop.popmeta), 29
main() (in module PyPop.pypop), 29
main_interactive() (in module PyPop.pypop), 29
makeSeqDictionaries() (AnthonyNolanFilter method), 11
Meta (class in PyPop.popaggregate), 25
module

PyPop, 2
PyPop.arlequin, 41
PyPop.citation, 3
PyPop.command_line_interface, 3
PyPop.datatypes, 5
PyPop.filters, 8
PyPop.haplo, 13
PyPop.hardyweinberg, 16
PyPop.homozygosity, 19
PyPop.parsers, 22
PyPop.popaggregate, 25
PyPop.popanalysis, 27
PyPop.popmeta, 29
PyPop.pypop, 29
PyPop.randombinning, 29
PyPop.utils, 30
PyPop.xslt, 39

N
natural_sort_key() (in module PyPop.utils), 37
ns (in module PyPop.xslt), 39
num_zeros() (in module PyPop.xslt), 40

O
opentag() (XMLOutputStream method), 31
outputArlequin() (ArlequinBatch method), 42
outputArlequin() (HaploArlequin method), 16
outputArpFile() (ArlequinWrapper method), 41

outputArsFile() (ArlequinWrapper method), 41
outputRunFiles() (ArlequinBatch method), 43
outputRunFiles() (ArlequinWrapper method), 41

P
ParseAlleleCountFile (class in PyPop.parsers), 24
ParseFile (class in PyPop.parsers), 22
ParseGenotypeFile (class in PyPop.parsers), 23
PassThroughFilter (class in PyPop.filters), 9
platform_info (in module PyPop), 44
prefix (in module PyPop.xslt), 39
pval() (in module PyPop.hardyweinberg), 19
PyPop

module, 2
PyPop.arlequin

module, 41
PyPop.citation

module, 3
PyPop.command_line_interface

module, 3
PyPop.datatypes

module, 5
PyPop.filters

module, 8
PyPop.haplo

module, 13
PyPop.hardyweinberg

module, 16
PyPop.homozygosity

module, 19
PyPop.parsers

module, 22
PyPop.popaggregate

module, 25
PyPop.popanalysis

module, 27
PyPop.popmeta

module, 29
PyPop.pypop

module, 29
PyPop.randombinning

module, 29
PyPop.utils

module, 30
PyPop.xslt

module, 39
PyPopModuleRenameDeprecationWarning, 43

R
RandomBinsForHomozygosity (class in PyPop.randombinning), 29
randomMethod() (RandomBinsForHomozygosity method), 30
returnBulkHomozygosityStats() (HomozygosityEWSlatkinExact

method), 21
runArlequin() (ArlequinBatch method), 43
runArlequin() (ArlequinWrapper method), 41
runArlequin() (HaploArlequin method), 16

S
sequenceMethod() (RandomBinsForHomozygosity method), 30
serializeAlleleCountDataAt() (AlleleCounts method), 7
serializeAlleleCountDataAt() (Genotypes method), 6
serializeAlleleCountDataTo() (Genotypes method), 6
serializeEnd() (Emhaplofreq method), 14
serializeEnd() (Haplostats method), 15
serializeHomozygosityTo() (Homozygosity method), 21
serializeHomozygosityTo() (HomozygosityEWSlatkinExact method),

21
serializeMetadataTo() (ParseFile method), 23
serializeStart() (Emhaplofreq method), 13
serializeStart() (Haplostats method), 15

50

serializeSubclassMetadataTo() (AlleleCounts method), 7
serializeSubclassMetadataTo() (Genotypes method), 5
serializeSubclassMetadataTo() (ParseAlleleCountFile method), 25
serializeSubclassMetadataTo() (ParseGenotypeFile method), 24
serializeTo() (HardyWeinberg method), 17
serializeTo() (HardyWeinbergEnumeration method), 18
serializeTo() (HardyWeinbergGuoThompsonArlequin method), 19
serializeTo() (HomozygosityEWSlatkinExactPairwise method), 22
serializeXMLTableTo() (HardyWeinberg method), 17
setup_logger() (in module PyPop), 44
splitIntoNGroups() (in module PyPop.utils), 39
startFiltering() (AnthonyNolanFilter method), 10
startFiltering() (Filter method), 8
startFiltering() (PassThroughFilter method), 9
startFirstPass() (AnthonyNolanFilter method), 10
startFirstPass() (Filter method), 8
startFirstPass() (PassThroughFilter method), 9
StringMatrix (class in PyPop.utils), 32
SubclassError, 8

T
tagContents() (XMLOutputStream method), 32
TextOutputStream (class in PyPop.utils), 31
translate_file_to_file() (in module PyPop.popaggregate), 26
translate_file_to_stdout() (in module PyPop.popaggregate), 26
translate_string_to_file() (in module PyPop.popaggregate), 26
translate_string_to_stdout() (in module PyPop.popaggregate), 26
translateMatrix() (AnthonyNolanFilter method), 11

U
unique_elements() (in module PyPop.utils), 37
usage_message (in module PyPop.arlequin), 43
use_scipy (in module PyPop.hardyweinberg), 17

W
write() (TextOutputStream method), 31
writeln() (TextOutputStream method), 31
writeToLog() (AnthonyNolanFilter method), 11
writeToLog() (Filter method), 8
writeToLog() (PassThroughFilter method), 9

X
XMLOutputStream (class in PyPop.utils), 31

51

	API changes
	Package introduction
	Submodules
	PyPop.citation
	Attributes
	Functions
	Module Contents

	PyPop.command_line_interface
	Classes
	Functions
	Module Contents

	PyPop.datatypes
	Classes
	Functions
	Module Contents

	PyPop.filters
	Exceptions
	Classes
	Module Contents

	PyPop.haplo
	Classes
	Module Contents

	PyPop.hardyweinberg
	Attributes
	Classes
	Functions
	Module Contents

	PyPop.homozygosity
	Classes
	Functions
	Module Contents

	PyPop.parsers
	Classes
	Module Contents

	PyPop.popaggregate
	Classes
	Functions
	Module Contents

	PyPop.popanalysis
	Classes
	Functions
	Module Contents

	PyPop.popmeta
	Functions
	Module Contents

	PyPop.pypop
	Functions
	Module Contents

	PyPop.randombinning
	Classes
	Module Contents

	PyPop.utils
	Attributes
	Classes
	Functions
	Module Contents

	PyPop.xslt
	Attributes
	Functions
	Package Contents

	Deprecated Submodules
	PyPop.arlequin
	Attributes
	Classes
	Module Contents

	Attributes
	Exceptions
	Functions
	Package Contents
	GNU Free Documentation License
	Python Module Index
	Index

